$\mathrm{C} 7 B-\mathrm{H} 6 B \cdots \mathrm{O} 2 A$	1.00	2.32	$3.288(2)$	164
$\mathrm{O} 1 C-\mathrm{H} 1 C \cdots \mathrm{O} 1 D$	0.85	2.07	$2.895(2)$	169
$\mathrm{O} 1 D-\mathrm{H} 1 D \cdots \mathrm{O} 2 A$	0.85	1.87	$2.700(2)$	172
OIE-H1E O3B	0.85	2.10	$2.911(12)$	159
O1E-H2E OO1B	0.85	2.13	$2.933(10)$	159

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $-x, \frac{1}{2}+y, 1-z$; (iii) $x-1, y, z$; (iv) $1+x, y, z ;$ (v) $1-x, y-\frac{1}{2}, 1-z$.

The structures of AF2p (α-form) and LF2p (β-form) were solved directly using SHELXTL (Sheldrick, 1997b). The cell dimensions are rather similar to those of LVe ($a=$ 11.01, $b=23.52, c=12.26 \AA$ and $\beta=90.01^{\circ}$; Görbitz \& Torgersen, 1999) and the unorthodox systematic absences are the same: $h 00, h=4 n+2$ absent; $0 k 0, k=2 n+1$ absent; $00 l, l=2 n+1$ absent. The two structures proved to be isomorphous, and the structure of VF2p was solved in the same indirect manner as described previously for LVe (Görbitz \& Torgersen, 1999). As observed for LVe (Görbitz \& Torgersen, 1999), the VF2 p crystal used for data collection was a TLQS (twin-lattice quasi-symmetry) twin (Giacovazzo et al., 1992), which was effectively treated as TLS (twinlattice symmetry) since all reflections contained intensity from both twin components. Crystal twinning for a monoclinic system emulating orthorhombic was handled by the SHELXTL command TWIN $1000-1000-1$. The fractions of the two components are $0.576(2)$ and 0.424 (2). Pairs of peptide molecules related by non-crystallographic screw axes were connected by tight SAME 0.00020 .0004 commands, constraining equivalent bond lengths and bond angles (but not torsion angles) to be almost similar. This procedure was tested and discussed for refinement of LVe (Görbitz \& Torgersen, 1999). Furthermore, $U_{i i}(i=1,2$ or 3$)$ and U_{12} values are the same for A and C, and for B and D, while U_{13} and U_{23} values for C and D were constrained to be $-U_{13}$ and $-U_{23}$ for the corresponding atoms in A and B, respectively. Finally, milder SAME 0.0050 .008 restraints were used for the geometries of the four 2-propanol molecules. A loose SAME 0.010 .01 restraint was also used for bond lengths and bond angles in the two 2-propanol molecules of AF2p.

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structures: SHELXTL; program(s) used to refine structures: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The purchase of the Siemens SMART diffractometer was made possible through support from the Research Council of Norway (NFR).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1078). Services for accessing these data are described at the back of the journal.

References

Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanotti, G. \& Catti, M. (1992). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 83-87. Oxford University Press.
Görbitz, C. H. (1997). Acta Cryst. C53, 736-739.
Görbitz, C. H. (1999). Acta Cryst. C55, 670-672.
Görbitz, C. H. \& Torgersen, E. (1999). Acta Cryst. B55, 104-113.
Krause, J. A., Baures, P. W. \& Eggleston, D. S. (1993). Acta Cryst. B49, 123-130.

Sheldrick, G. M. (1996). SADABS. Program for Absorption Corrections. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Structure Determination Programs. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 2177-2179

4,8-Dibenzyl-2',4', $\mathbf{6}^{\prime}$-trinitrospiro[1,3-dioxa-azulenium-2,1'-cyclohexadienide]

Oleg Ya. Borbulevych, ${ }^{a}$ Michall Yu. Antipin ${ }^{a}$ and Lev P. Olekhnovich ${ }^{b}$

${ }^{\text {a }}$ A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilov St, Moscow 117813, Russia, and ${ }^{b}$ Department of Chemistry, Postov
State University, 7 Zorge St, Rostov-on-Don 344090, Russia.
E-mail: oleg@xrlab.ineos.ac.ru
(Received 8 July 1999; accepted 29 September 1999)

Abstract

In molecules of the title compound, $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}$, the nitro groups have almost equivalent geometries. Similar observations were made for some related anionic σ complexes. However, equalization of bond lengths within the conjugated system of the cyclohexadienide ring is stronger than that in other Meisenheimer complexes.

Comment

The synthetic chemistry of electron-deficient aromatics and heteroaromatics is circumscribed by the two major mechanisms of nucleophilic aromatic substitution, i.e. SNAr and Vicarious Nucleophilic Substitution (VNS; Artamkina et al., 1982; Buncel et al., 1995). These displacement reactions form the backbone of numerous important syntheses of pharmaceuticals and potential drugs and several other classes of bioactive agents. The key intermediate in both the SNAr and VNS mechanisms is a negatively charged σ complex commonly termed a Meisenheimer complex.

Dipolar spirocyclic Meisenheimer complexes with tropylium cations are a special class of such complexes and, in general, can be considered as a new class of heterocyclic compounds. In addition, these compounds are of great interest because their formation involves acylotropic rearrangements (Knyazev \& Drozd, 1995; Kurbatov et al., 1997).

However, the structures of only a few such σ complex derivatives of 2,4,6-trinitrobenzene have been determined using X-ray methods (Furmanova et al., 1980; Olekhnovich et al., 1982). Compounds of this series contain different combinations of heteroatoms [O,O (II), N,O (III) and N, N (IV)] at the spiro C atom. We now report the result of an X-ray investigation of a dipolar Meisenheimer complex, (I), analogous to (II) but carrying bulky benzyl substituents on the sevenmembered ring.

(I)
(II) $X=\mathrm{O}, Y=\mathrm{O}, R_{1}=\mathrm{CH}_{3}, R_{2}=\mathrm{CH}_{3}, R_{3}=\mathrm{CH}_{3}$
(III) $X=\mathrm{NH}, Y=\mathrm{O}, R_{1}=\mathrm{H}, R_{2}=\mathrm{H}, R_{3}=\mathrm{H}$
(IV) $X=\mathrm{NH}, Y=\mathrm{NH}, R_{1}=\mathrm{H}, R_{2}=\mathrm{H}, R_{3}=\mathrm{H}$

The cyclohexadienide ring in (I) is almost planar, with $\mathrm{C} 3-\mathrm{C} 4[1.385(4) \AA$] and C4-C5 [1.385 (4) A $]$ bond lengths somewhat longer than the $\mathrm{C} 2-\mathrm{C} 3$ [1.367 (5) \AA] and C5-C6 [1.352 (5) Å] distances. However, this difference is less pronounced than that in (II)-(IV) (Furmanova et al., 1980; Olekhnovich et al., 1982) or in Meisenheimer complexes of 2,4,6-trinitrobenzene with a potassium cation (Borbulevych et al., 1998).

In (I), there are no significant differences between the $\mathrm{C}-\mathrm{N}$ bond lengths for the three nitro groups (Table 1), a similar situation to that found in molecules (II) and (III). However, in (III), the $\mathrm{C}-\mathrm{N}$ bond to the nitro group in the para-position is very short [1.407(5) \AA] (Olekhnovich et al., 1982) compared with the C-N bonds to the other nitro groups, which have lengths similar to those in (I).

The nitro groups bound to C2 and C4 are nearly coplanar with the cyclohexadienide ring [the O 1 $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ and $\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$ torsion angles are $-2.7(4)$ and $-3.3(5)^{\circ}$, respectively] in spite of the presence of short intramolecular contacts listed in Table 2. However, the third nitro group is rotated out of the plane of the ring. The torsion angle $\mathrm{O} 6-\mathrm{N} 3-\mathrm{C} 6-$ C 1 is $10.1(4)^{\circ}$.

The dioxolane ring in (I) adopts a flattened envelope conformation. Deviation of the O8 atom from the plane of the other atoms of this ring is 0.054 (4) \AA. The dihedral angle between the least-squares mean planes of the six- and five-membered rings is $89.32(8)^{\circ}$.

Bond distances in the seven-membered ring of (I) are nearly equal (Table 1), in agreement with previous data for (II) and (IV), but in (III), alternation in these
bond lengths was observed (Furmanova et al., 1980; Olekhnovich et al., 1982).

The benzyl group at C 8 has $\mathrm{a}+a c$ orientation with respect to the $\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 8-\mathrm{C} 14$ bonds [the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15$ and $\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$ torsion angles are $101.2(3)$ and $103.4(4)^{\circ}$, respectively], while the substituent on C 12 is $+s c$ with respect to the $\mathrm{C} 13-$ C 12 and $\mathrm{C} 12-\mathrm{C} 21$ bonds [the $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 21-\mathrm{C} 22$ and $\mathrm{C} 12-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$ torsion angles are $73.3(4)$ and $69.1(4)^{\circ}$, respectively].

Fig. 1. View of the title compound. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level and H atoms are drawn as circles of arbitrarily small radii for clarity.

Experimental

Crystals of (I) were obtained by evaporation at ambient temperature of solvent from a solution of (I) in nitromethane.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}$
$M_{r}=513.45$
Monoclinic
$P 2_{1} / n$
$a=9.311(5) \AA$
$b=12.877$ (7) \AA
$c=19.806(10) \AA$
$\beta=94.74$ (4) ${ }^{\circ}$
$V=2367(2) \AA^{3}$
$Z=4$
$D_{x}=1.441 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Syntex $P 2_{1} / P C$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 24 reflections
$\theta=10-11^{\circ}$
$\mu=0.108 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Square prism
$0.50 \times 0.20 \times 0.20 \mathrm{~mm}$ Red
$\theta_{\text {max }}=25.05^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 15$
$l=-23 \rightarrow 23$

4458 measured reflections 4182 independent reflections 2066 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.101$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.121$
$S=1.225$
4117 reflections
343 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0683 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

2 standard reflections every 98 reflections intensity decay: 5\%

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.446(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.352(5)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.432(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.395(4)$
$\mathrm{N} 3-\mathrm{C} 6$	$1.438(4)$	$\mathrm{C} 7-\mathrm{Cl} 3$	$1.415(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.489(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.384(4)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.493(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.378(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.367(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.393(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.385(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.391(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.376(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$124.0(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 13$	$131.1(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.3(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$130.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.6(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$131.4(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.6(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$129.1(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl}$	$124.6(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 7$	$132.7(3)$
$\mathrm{C} 13-\mathrm{O}-\mathrm{C} 1-\mathrm{O} 7$	$-3.7(3)$	$\mathrm{C} 1-\mathrm{O}-\mathrm{C} 13-\mathrm{C} 7$	$3.8(3)$
$\mathrm{C} 7-\mathrm{O} 7-\mathrm{Cl}-\mathrm{O} 8$	$2.2(3)$	$\mathrm{O} 7-\mathrm{C} 7-\mathrm{Cl} 3-\mathrm{O} 8$	$-2.4(3)$
$\mathrm{C} 1-\mathrm{O} 7-\mathrm{C} 7-\mathrm{C} 13$	$-0.1(3)$		

Table 2. Intramolecular contact distances (\AA) and van der Waals radii

		Radius \dagger
O1...C7	2.816 (4)	3.00
O1...C13	2.777 (4)	3.00
O2 . . H 3	2.369 (5)	2.45
O3...H3	2.428 (5)	2.45
O4. . H 5	2.395 (4)	2.45
O5...H5	2.359 (4)	2.45
O6...C7	2.896 (4)	3.00
O6..Cl3	2.959 (4)	3.00

\dagger van der Waals radii are taken from Zefirov \& Zorky (1989).
The slightly high value of R_{1} is attributed to the limited quality of available crystals.

Data collection: P3 (Siemens, 1989). Cell refinement: P3. Data reduction: PROFIT (Strel'tsov \& Zavodnik, 1989). Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

This work was supported by the Russian Foundation for Basic Research (grant Nos. 97-03-33783 and 96-1597367).

[^0]
References

Artamkina, G. A., Egorov, M. P. \& Beletskaya, I. P. (1982). Chem. Rev. 82, 427-459.
Borbulevych, O. Ya., Shishkin, O. V., Kovalevsky, A. Yu., Atroschenko, Yu. M., Alifanova, E. N., Gitis, S. S., Kaminsky, A. Ya. \& Tarasova, E. Yu. (1998). Monatsh. Chem. 129, 467-472.

Buncel, E., Dust, J. M. \& Terrier, F. (1995). Chem. Rev. 95, 22612280.

Furmanova, N. G., Struchkov, Yu. T., Kompan, O. E., Budarina, Z. N., Olekhnovich, L. P. \& Minkin, V. I. (1980). Zh. Strukt. Khim. 21, 83-89.
Knyazev, V. N. \& Drozd, V. N. (1995). Zh. Org. Khim. (Russ. J. Org. Chem.), 31, 3-30.
Kurbatov, S. V., Budarina, Z. N., Vaslyaeva, G. S., Borisenko, N. I., Knyazev, A. P., Minkin, V. I., Zhdanov, Y. A. \& Olekhnovich, L. P. (1997). Russ. Chem. Bull. 46, 1445-1448.

Olekhnovich, L. P., Furmanova, N. G., Minkin, V. I., Struchkov, Yu. T., Kompan, O. E., Budarina, Z. N., Yudilevich, I. A. \& Eryuzheva, O. V. (1982). Zh. Org. Khim. (Russ. J. Org. Chem.), 18, 465-474.
Sheldrick, G. M. (1994). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Siemens (1989). P3. Program for Data Collection. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Strel'tsov, V. A. \& Zavodnik, V. E. (1989). Kristallografiya, 34, 13691375.

Zefirov, Yu. V. \& Zorky, P. M. (1989). Usp. Khim. (Russ. Chem. Rev.), 58, 713-746.

Acta Cryst. (1999). C55, 2179-2182

2-Benzoyl-2-methyl-1,3-dithiane

Ingfried Stahl, Iris Schomberg and Gerlinde Frenzen
Fachbereich 19-Biologie/Chemie, Universität-Gh Kassel, Heinrich-Plett-Straße 40, D-34109 Kassel, Germany E-mail: istahl@hrz.uni-kassel.de

(Received II January 1999; accepted 3 September 1999)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{OS}_{2}$, shows a 1,3 -dithiane ring adopting a chair conformation with the 2-benzoyl group orientated axially. The carbonyl-O atom lies above the heterocycle, but is asymmetrically disposed with respect to both S atoms. Thus, the conformation can mainly be discussed on the basis of electrostatic dipole-dipole attraction (anomeric effect) of the $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}=\mathrm{O}$ dipoles, together with exo-orientation of the phenyl group as a consequence of its steric demand. The observed bond distances do not support an $n \rightarrow \sigma^{*}$ delocalization as a further reason for the axial orientation of the carbonyl group.

Comment

2-Acyl-1,3-dithianes represent important key intermediates and may, after sulfoxidation, be used as stereocon-

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1362). Services for accessing these data are described at the back of the journal.

